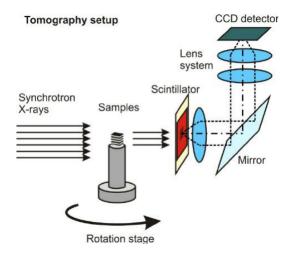
De-jittering & Reconstruction of Images

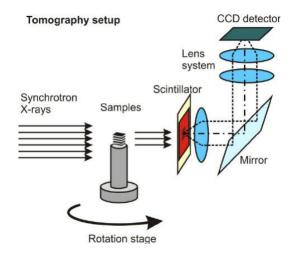
Evelyn Cueva, Matthias Ehrhardt, Paul Quinn, Shaerdan Shataer, Jordan Taylor

February 1, 2019

The Problem

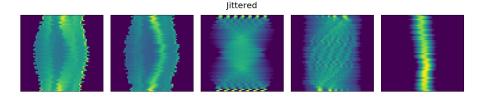


The Problem

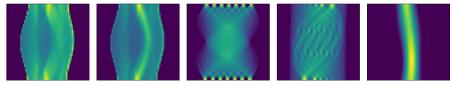


On a nano level, it is near impossible to place the sample back in it's exact original location

Toy Dataset



Ground Truth



Ground truth available and jitter process available from tomophantom package from https://github.com/dkazanc

Minimisation of Total Variance (TV)

As the ground truth sinograms are smooth, we can consider the absolute difference between each pixel to neighbouring pixels.

As the ground truth sinograms are smooth, we can consider the absolute difference between each pixel to neighbouring pixels.

 Define T_s(·) as a function which takes in an image and moves columns vertically by <u>s</u>. As the ground truth sinograms are smooth, we can consider the absolute difference between each pixel to neighbouring pixels.

• Define $T_{\underline{s}}(\cdot)$ as a function which takes in an image and moves columns vertically by <u>s</u>.

• Define
$$TV(\cdot) := \sum_{i,j} |(\nabla \cdot)_{i,j}|$$

As the ground truth sinograms are smooth, we can consider the absolute difference between each pixel to neighbouring pixels.

• Define $T_{\underline{s}}(\cdot)$ as a function which takes in an image and moves columns vertically by <u>s</u>.

• Define
$$TV(\cdot) := \sum_{i,j} |(\nabla \cdot)_{i,j}|$$

•
$$\underline{\mathbf{s}}^* = \operatorname{argmin}_{\underline{\mathbf{s}}} TV(T_{\underline{\mathbf{s}}}(\mathbf{X}))$$

Simple Toy Problem

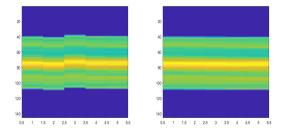


Figure: Before and after alignment

Shepp-Logan Phantom Sinogram Snippet

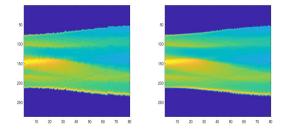


Figure: Before and after alignment

$$\mathbf{U}^* = \operatorname*{argmin}_{\mathbf{U}} \sum_i (f_i(\mathbf{U})) + g(\mathbf{U})$$

$$egin{aligned} \mathbf{U}^* &= rgmin_{\mathbf{U}} \sum_i (f_i(\mathbf{U})) + g(\mathbf{U}) \ & \mathbf{U}^* = ||R_{ heta_i} T_{s_i}(\mathbf{U}) - ext{data}_{ heta_i}||_2^2 \end{aligned}$$

$$\begin{split} \mathbf{U}^* &= \operatorname*{argmin}_{\mathbf{U}} \sum_i (f_i(\mathbf{U})) + g(\mathbf{U}) \\ f_i(\mathbf{U}) &= ||R_{\theta_i} T_{s_i}(\mathbf{U}) - \operatorname{data}_{\theta_i}||_2^2 \\ g(\mathbf{U}) &= \begin{cases} \infty, & \text{if any } u_{i,j} < 0 \\ \lambda T V(\mathbf{U}), & \text{otherwise} \end{cases} \end{split}$$

Try to find the best slice of an image which has shifted by some unknown small value such that we see a particular column of the sinogram.

Initialise s randomly,
$$\epsilon > 0, \sigma_0 \in (0, 1]$$

for $i = 1, ..., n_i ter$ do
U_i = argmin $\sum_i (f_i(U)) + g(U)$
U
for $j = 1, ..., N$ do
for $k = 1, ..., K$ do
 $|$ Draw $s_k \sim U(s_j - \epsilon, s_j + \epsilon)$
if $f_k(U) < f_j(U)$ then
 $|$ $s_j = s_k$
end
end
end
end

Square Toy Problem

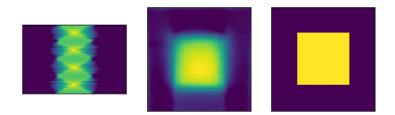
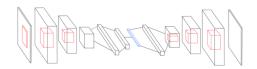


Figure: From left to right are the jittered sinogram, image reconstruction and ground truth

Deep Learning

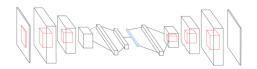
Architecture: Convolutional Auto-Encoder



Deep Learning

Architecture: Convolutional Auto-Encoder

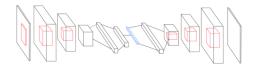
• Convolutions to extract local information



Deep Learning

Architecture: Convolutional Auto-Encoder

- Convolutions to extract local information
- Finds relationships between pixels in much lower dimensional space using data-driven non-linear PCA



Results