De-jittering \& Reconstruction of Images

Evelyn Cueva, Matthias Ehrhardt, Paul Quinn, Shaerdan Shataer, Jordan Taylor

February 1, 2019

The Problem

The Problem

On a nano level, it is near impossible to place the sample back in it's exact original location

Toy Dataset

Jittered

Ground Truth

Ground truth available and jitter process available from tomophantom package from https://github.com/dkazanc

Minimisation of Total Variance (TV)

As the ground truth sinograms are smooth, we can consider the absolute difference between each pixel to neighbouring pixels.

Minimisation of Total Variance (TV)

As the ground truth sinograms are smooth, we can consider the absolute difference between each pixel to neighbouring pixels.

- Define $T_{\underline{\mathbf{s}}}(\cdot)$ as a function which takes in an image and moves columns vertically by \mathbf{s}.

Minimisation of Total Variance (TV)

As the ground truth sinograms are smooth, we can consider the absolute difference between each pixel to neighbouring pixels.

- Define $T_{\underline{\mathbf{s}}}(\cdot)$ as a function which takes in an image and moves columns vertically by \mathbf{s}.
- Define $T V(\cdot):=\sum_{i, j}\left|(\nabla \cdot)_{i, j}\right|$

Minimisation of Total Variance (TV)

As the ground truth sinograms are smooth, we can consider the absolute difference between each pixel to neighbouring pixels.

- Define $T_{\underline{s}}(\cdot)$ as a function which takes in an image and moves columns vertically by \mathbf{s}.
- Define TV $(\cdot):=\sum_{i, j}\left|(\nabla \cdot)_{i, j}\right|$
- $\underline{\mathbf{s}}^{*}=\operatorname{argmin} T V\left(T_{\underline{\mathbf{s}}}(\mathbf{X})\right)$
s

Simple Toy Problem

Figure: Before and after alignment

Shepp-Logan Phantom Sinogram Snippet

Figure: Before and after alignment

Direct Image Reconstruction from Jittered Data

$$
\mathbf{U}^{*}=\underset{\mathbf{U}}{\operatorname{argmin}} \sum_{i}\left(f_{i}(\mathbf{U})\right)+g(\mathbf{U})
$$

Direct Image Reconstruction from Jittered Data

$$
\begin{aligned}
\mathbf{U}^{*} & =\underset{\mathbf{U}}{\operatorname{argmin}} \sum_{i}\left(f_{i}(\mathbf{U})\right)+g(\mathbf{U}) \\
f_{i}(\mathbf{U}) & =\left\|R_{\theta_{i}} T_{s_{i}}(\mathbf{U})-\operatorname{data}_{\theta_{i}}\right\|_{2}^{2}
\end{aligned}
$$

Direct Image Reconstruction from Jittered Data

$$
\begin{aligned}
\mathbf{U}^{*} & =\underset{\mathbf{U}}{\operatorname{argmin}} \sum_{i}\left(f_{i}(\mathbf{U})\right)+g(\mathbf{U}) \\
f_{i}(\mathbf{U}) & =\left\|R_{\theta_{i}} T_{s_{i}}(\mathbf{U})-\operatorname{data}_{\theta_{i}}\right\|_{2}^{2} \\
g(\mathbf{U}) & = \begin{cases}\infty, & \text { if any } u_{i, j}<0 \\
\lambda T V(\mathbf{U}), & \text { otherwise }\end{cases}
\end{aligned}
$$

Try to find the best slice of an image which has shifted by some unknown small value such that we see a particular column of the sinogram.

Direct Image Reconstruction from Jittered Data

Initialise s randomly, $\epsilon>0, \sigma_{0} \in(0,1]$ for $i=1, \ldots, n_{-}$iter do
$\mathbf{U}_{i}=\underset{i}{\operatorname{argmin}} \sum_{i}\left(f_{i}(\mathbf{U})\right)+g(\mathbf{U})$
U
for $j=1, \ldots, N$ do
for $k=1, \ldots, K$ do
Draw $s_{k} \sim U\left(s_{j}-\epsilon, s_{j}+\epsilon\right)$
if $f_{k}(\mathbf{U})<f_{j}(\mathbf{U})$ then
| $s_{j}=s_{k}$
end
end
end
end

Square Toy Problem

Figure: From left to right are the jittered sinogram, image reconstruction and ground truth

Deep Learning

Architecture: Convolutional Auto-Encoder

Deep Learning

Architecture: Convolutional Auto-Encoder

- Convolutions to extract local information

$$
K<11 \ggg+\infty
$$

Deep Learning

Architecture: Convolutional Auto-Encoder

- Convolutions to extract local information
- Finds relationships between pixels in much lower dimensional space using data-driven non-linear PCA

$$
1 \ll 1 I \ggg>+\infty
$$

Results

